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Differential Pulse Code Modulation (DPCM) has been used with speech
for many years. It has not been as successful for images because of poor edge
performance. The only cor;ruption in DPCM is quantizer error but this
corruption becomes quite large in the region of an edge because of the abrupt
changes in the statistics of the signal.

We introduce two improved DPCM schemes; Edge correcting DPCM and
Edge Preservation Differential Coding. These two coding schemes will detect
the edges and take action to correct them. In an Edge Correcting scheme, the
quantizer error for an edge is encoded using a recursive quantizer with entropy
coding and sent to the receiver as side information. In an Edge Preserving
scheme, when the quantizer input falls in the overload region the quantizer
error is encoded and sent to the receiver repeatedly until the quantizer input
falls in the inner levels. Therefore these coding schemes increase the bit rate
in the region of an edge and require variable rate channels.

In this thesis we implement these two variable rate coding schemes
on a token ring network. Timed token protocol supports two classes of
messages; asynchronous and synchronous. The synchronous class provides a

pre-allocated bandwidth and a guaranteed response time. The remaining



bandwidth is dynamically allocated to the asynchronous class. The Edge
Correcting DPCM is simulated by considering the edge information under the
asynchronous class. For the simulation of the Edge Preserving scheme, the
amount of information sent each time is fixed, but the length of the packet or
the bit rate for that packet is chosen depending on the available capacity. The
performance of the network, and the performance of the image coding

algorithms, is studied.
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CHAPTER 1 INTRODUCTION

Digital communication is a rapidly expanding area of the
communications field. Emerging communications and information networks
require ubiquitous use of digital speech, digital audio and digital video. There
are various advantages of digital communication over analog communication.
To give a concise list of these advantages, digitized signals are less sensitive
to transmission noise, easy to regenerate and store, to error-protect and
encrypt, and to multiplex, packetize and mix. An added advantage of digital
transmission is its potential for redundancy removal.

With an increase in the need to process, store and transmit huge
amounts of data, data compression is becoming more of a necessity.
Compression is even more important in the case of image signals, because of
the large amount of data involved.

Speech and image signals are characterized as redundant waveforms.
In predictive coding systems, waveform redundancy is utilized to realize
reductions in bit rate. The Differential Pulse Code Modulation (DPCM)
scheme, which is based on the notion of quantizing a prediction error signal,
has been successfully used with speech for many years. However the results
are quite disappointing when these coders are used with image data. This is
because of the nature of the images. The presence of edges in an image causes

the statistics of the signal to change rapidly in that region. These predictive



2

coders are based on the statistics of the signal being ﬁxed or slow changing.
Therefore, the edges in an image cause the system to operate at low efficiency.
The designer must accept either the loss of edge information, or a more
complex and expensive system.

In this thesis, we study two improved Differential Pulse Code
Modulation schemes, the edge correcting DPCM scheme developed by Sayood
and Schekall [1]and the edge preserving coding scheme developed by Rost and
Sayood[2]. These two coding schemes provide excellent edge preservation
properties and still retain simplicity and efficiency. The only disadvantage is
that these coding schemes require variable rate channels. This requirement
makes it attractive to use these systems in a packet network environment.

The demand for integrated services local area networks has increased
rapidly in recent years with the advent of new applications such as factory and
automation. "Local Area" implies that the link is within a limited geographical
area, normally within the same building. There is a clear need for local area
networks in most organizations. Businesses are discovering that 80 percent

of their communications requirements occurs across relatively short distances,
such as within a group of offices or in a building.

The progress of LAN technology now makes it economical to introduce
computer networks in a variety of different application fields. However, as
new applications become interested in LANs, new requirements need to be

met. Recently, the use of LAN in manufacturing communication and for
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integrated transmission of digital voice/video signals and data, has brought

attention to the problem of using medium access protocols. These protocols
allow a bounded access time for a class of messages, refered to as synchronous,
subject to hard delivery deadlines, while retaining good throughput
characteristics for the transmission of asynchronous traffic[3]-[4].

In Edge Correcting DPCM and Edge Preservation Coding schemes, edges
are detected and a different action in each scheme is taken to correct them.
Therefore, these schemes increase the bit rate in the region of an edge which
makes them operate at variable rates. In this thesis, we implement these
two coding schemes on a token ring network and send edge information only
when the network finds bandwidth available for that information. This still
retains the good throughput characteristics for the network.

Chapter two contains an overview of the Differential Pulse Code
Modulation scheme. Later sections of this chapter discuss adaptive algorithms
needed for the efficient prediction of a nonstationary process. Description of
the adaptive ARMA predictor and a detailed analysis of the adaptive quantizer
is also provided. Finally adaptive DPCM with an ARMA predictor is simulated
and the results show that this scheme provides reasonably good performance
for images with fewer edges, whereas for images with more edges the system
needs to be improved.

In chapter three, the performance of a system is improved with an edge

correcting DPCM. In this scheme the edges are detected by keeping track of
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the guantizer error. The edge performance is improved by sending extra
information about the edges. This extra information is a coded version of the
quantizer error. The quantizer error is coded by using a recursive quantizer
with entropy coding. This scheme is simulated and the results are compared
with the results in the second chapter. The performance is vastly improved
with only little overhead.

In chapter four, a different approach, known as Edge Preserving
Differential Image Coding Scheme is proposed to improve the edge
performance. In this scheme reduction of the edge degradation is obtained by
reducing or eliminating overload noise. When the quantizer input falls in the
overload region, the quantizer error is again encoded and sent to the receiver
repeatedly until the quantizer input falls in the inner levels. Finally, the
simulation results are presented. The results show that this scheme even at
low rates provides excellent edge preservation properties. There are absolutely
no edge errors.

Chapter five gives a brief introduction to the token ring network and
M/M/1 queuing system. In chapter six, we simulate the edge Correcting DPCM
and the Edge Preserving schemes on a token ring network. The extra
information in an Edge Preserving scheme is sent through the token ring
network as asynchronous information only when the bandwidth becomes
available, otherwise the extra information will be discarded. In the Edge

Preserving scheme the amount of information sent in each packet is fixed. The
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length of the packet is varied by changing the stepsize of the quantizer used

to process that packet. The length of the packet is chosen to match the
available capacity on the network. Finally, simulation results are presented

by operating the network at different loads.



CHAPTER 2 DIFFERENTIAL PULSE CODE MODULATION

In this chapter, a data compression scheme called Differential Pulse
Code Modulation is introduced. This scheme is used for compression of
digitized speech and images. Later sections of this chapter discuss adaptive
algorithms needed for the efficient prediction of a nonstationary process. A
more extensive description of the adaptive ARMA predictor and a detailed
analysis of the adaptive quantizer will also be provided for future reference.
Finally, simulation results using adaptive DPCM are provided.

DPCM has been used successfully with speech for many years. Though
image data is highly redundant like speech, the results for image compression
are quite disappointing. This is because the statistical properties of an image
do not allow for easy removal of redundancy. The presence of edges causes the
statistics of the signal to change rapidly. DPCM depends on these statistics
being fixed or slowly changing. In this chapter we will discuss the adaptive
DPCM with which the edge performance of an image can be improved.

DPCM is a differential approach to Pulse Code Modulation[5]. It uses
the correlation between the samples of a waveform to predict the next sample
value. The prediction process is implemented at both the transmitter and
receiver in the same manner.

The predicted value is subtracted from the input signal at the

transmitter. The resulting error signal is encoded using a quantizer and
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transmitted through the channel. At the receiver the received error signal is
added to the predicted value to obtain an estimate of the original signal. If the
predictors at the transmitter and receiver are identical then the same
predicted value should result at the receiver.

A block diagram of the DPCM scheme is shown in figure 2.1. From

figure 2.1 it can be seen that at the encoder, the prediction error e(k) is given

by
2.1
e(k) = s(k) - p(k)
where the predicted value p(k) is given by
N
p(k) = Y a; Stk-j) 2.2
=1
where a are the coefficients of the predictor
and
$(k) = e (k)+p(k) 2.3
The quantized prediction error e (k) can be expressed as
e k) = e(R)+n (k) 2.4

where n (k) denotes the quantization noise.

If the channel is noisy e (k) is received as € (k) which is given by
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Figure 2.1 Block Diagram of a DPCM




&) = e (B)+n (k) 2.5

where n_ (k) represents the channel noise. Similarly, at the receiver

5(k) = plk)+€ (k) 2.6

where -

pk) = p(k)+n,(k) 2.7
the additional term n (k) being the result of the introduction of channel noise

into the prediction process. Using equations 2.1, 2.4, 2.5 and 2.7 in equation

2.6, we obtain

S0 = s(k)+n () +n (k)+n (k) 2.8

If the channel is error free, the last two terms in equation 2.8 will drop out
and the difference between the original and reconstructed signal is simply the

quantization error. Then equation 2.8 becomes

S(k) = s(k)+n q(k) 2.9

Equation 2.9 indicates that the signal at the receiver is a noise corrupted
version of the original source signal. In the region of an edge this corruption
becomes quite large and the edge information can be lost. Therefore the goal
of the DPCM design is to reduce the quantizer noise n (k) to a minimum value.

The optimum predictor coefficients &, for a particular image can be found

by preprocessing the image. The advantage of predicting the signal and
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sending only the error signal is that it has a lower dynamic range and requires
fewer bits to digitize. Another advantage of DPCM is that it is easy to
implement which makes it ideal for on-line coding of signals.

This system works best if the input signal is stationary. In the following
sections we describe an adaptive DPCM which allows the system to track slow

moving changes in the source statistics.

2.1 Adaptive DPCM system:

The general theory of operation of DPCM discussed above still applies
here. In ADPCM, both the quantizer and predictor are adaptive. Predictor
coefficients and the step size of the quantizer vary to keep track of the
changing input. The block diagram for an adaptive DPCM is shown in figure
2.2. Q, is the quantizer’s adaptation function which uses the previous output
to determine the step size for the quantizer. P, is the predictors adaptation
function and determines the predictor coefficients a, with the knowledge of §,
and e,. The quantizer used in this thesis is a 2-bit Jayant quantizer and the

predictor is an adaptive ARMA predictor.

2.1.1 Adaptive Quantizer:
The quantizer used in this study is an adaptive quantizer with a one
word memory. The idea behind this quantizer is that effective adaptation can

be realized with an explicit memory of only one sample under the assumption
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all this information is available in step size A(n-1). It is commonly known as
the Jayant quantizer.
The adaptation algorithm used with this quantizer is given by
A(k) = M(JH(k-1)|) Ak-1) 2.10
where A(.) is the step size and M(.) is the multiplier value. The input verses
output of a 2-bit uniform Jayant quantizer is shown in Figure 2.3. The two
bits given above the levels of the quantizer ranging from 00’ to '11’ are the

output bits of the quantizer. For an input between zero and A the quantizer
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gives an output of '10’ and for the input greater than or equal to A, the output
will be '11’ and so on.

The step size of the quantizer varies depending on the previous input
value. If the previous input falls between -A and A, the step size will be
multiplied by a value less than one. Otherwise, the step size will be multiplied
by a value greater than one. That is, the algorithm assumes that the next
sample value will be close t“o the present value and adjusts the step size
according to the input. This is highly desirable for nonstationary image
signals because it can adjust its output dynamic range to minimize the
quantizer error.

The multiplier values used in this simulation are given below. M(1)
corresponds to inner levels and M(2) corresponds to outer levels.

M(1)=0.8

M(2)=16
Tables containing M(.) values for DPCM as well as PCM are given in [6] and
(7].
In the following section we describe adaptive ARMA predictors and see how

their use affects edge encoding.

2.1.2 Adaptive ARMA Predictor:
The function of the predictor is to predict the next sample value

depending on the past input samples. The complexity of a DPCM system is
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directly related to that of the predictor algorithm. The equation for an ARMA

predictor is shown below

N M
p(k) = 3 a; stk-m®) + 3 bLk) e k-1() 2.11
i=1 J=1
where
m@) = 1, 256, 257, .........
and
1)=1,2, 3,4, ........ , M

a, are the coefficients of the fixed autoregressive predictor and b, are the time
dependent moving average coefficients.
AR coefficients can be calculated by using the Weiner-Hopf equation

given below in matrix form [8)

A= Rn-l 2.12

rxx

where

r. = [R(1) R_(256) R_(255)) 2.13

and

R_(0) R_(257) R_(256)
R_ =R, (Q257) R_(0) R (1) 2.14
R_(256) R_(1) R_(0)

R,, (n) is the discrete autocorrelation function. The statistics necessary to

compute the AR coefficients are found by preprocessing the image to be used.
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One way to adapt MA coefficients is by a steepest descent method. The

idea behind this approach is to change the control parameter, the MA
coefficients in this case, in the opposite direction of the cost criterion surface
gradient. The cost criterion in this case is the quantized error variance. The

gradient of the surface is defined as

V) = -Ele (HURK)] 2.15
where E[-] denotes the expected value and
UK = [e,(k-I(1)) e (k-1(2))..... e (k=IM)]T 2.16

and M is the number of MA terms. From this, the recursive equation for the

MA coefficients can be written as

Bk+1) = B + u E [e,()URK)] 2.17

with the approximation

E[e (WUK)] ~ e ()UK) 2.18
equation 2.17 becomes
Bk+1) = B(k) + ke (D Uk) 2.19
where
B(K) = [b,()by(k)....b, (K] 2.20

The proper choice of M will cause the predicted value to tend towards the

minimum quantized error variance.
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2.2 Results :

Three different images: Girl 256, Couple256 and image04 are simulated.
From each of these simulations, Signal to Noise ratio (SNR) and Peak Signal
to Noise Ratio (PSNR) values are computed. The resulting images and error
images were also collected in order to view and compare edge effects.

The SNR is an indication of how much noise is added during
transmission. It is the ratio of signal energy to noise energy and is usually

expressed in decibels (db).

SNR = 100 LOG, (3" s(/3" (sk)-5(K))?) 2.21
k=0 k=0

The PSNR is a somewhat different measure which is used to compare
SNR results from different images. If the PSNR of one image is subtracted
from the PSNR of another the result is a number that represents how much

more noise is added to one image than is added to the other.

PSNR = 10.01.06,0(2552/z.j (sCk)-5(k))®) 2.22
k=0

These two indices are computed from statistics gathered over the entire
image; therefore only statistically based conclusions can be drawn from them.
Nothing very specific can be said about the edge performance using these
measures. However, if it is known that there is an overall improvement in
edge performance, there will be an increase in the SNR or PSNR. Whereas,

if there is an increase in the SNR or PSNR, this does not necessarily mean
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that there is an averall improvement in edge performance.

In Figure 2.4, the resulting images and error images of the simulations
using the Girl256, Couple256 and image04 images are shown. And the results
are shown in Table 2.1. The error images show distinctly where the edge
errors occur and the full images can be used to see how these errors appear in
reality. The error images are enhanced by a factor of 5.

The error image of Girl256 shows some edge errors on the left cheek, up
the left shoulder, and in the flowers. Whereas the edges of the background,

such as the window, the curtain, and the streak along the side of the picture

Table 2.1 Results of a DPCM with an ARMA

Predictor.
Image SNR(db) PSNR(db)
Girl256 24.54 34.08
Couple256 19.89 33.43
Image04 24.62 24.38

are not visible. The error image of image04 shows some edge errors on the
letters and the edge errors of ribs are almost invisible. These edge errors do
not seriously effect the resulting images of Girl256 and 04.

The Couple256 image has more edges in it. The error image shows
many edge errors along the left edge of the picture and outlining the features
of the people. Note also the errors in the edges of the chair, the window, and

the vertical lines in the door jamb. These edge errors are quite significant and
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the resulting image looks blurred.

Therefore DPCM with an ARMA predictor is quite successful for images
with few edges and produces a smearing effect in images having many edges.
This edge smearing effect can be seen in the case of Couple256 and can not be

,improved any further with this system. These type of edge errors will be

addressed in the following chapters.
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CHAPTER 3 AN EDGE CORRECTING DPCM |

In the previous chapter, we saw that even improved prediction
algorithms like the adaptive ARMA prediction algorithm work well only for
slow changing inputs. But in images, when an edge is encountered, the input
signal changes rapidly. In these regions, quantizer error becomes quite large
and this error propagates because the predictor uses the corrupted signal to
make further predictions. This is because the information used to make
predictions is strictly limited to past values of the quantized prediction error
e, (k).

In this chapter, we introduce a modified DPCM which uses information
other than e, (k) to detect edges and take action to correct them [9]. This
scheme uses the recursive quantizer outside the DPCM loop to detect the
quantizer error and sends this as side information. We also provide a brief
introduction to entropy coding and finally present simulation results for this
scheme.

The basic idea behind this scheme is to find the difference between the
Jayant quantizer input and output. If this difference is above some threshold,
the difference is quantized using another quantizer and sent as side
information to the receiver. Simultaneously, at the receiver, this side
information is added to the decoder output to get the original signal. The

operation of the edge detection/correction scheme will be discussed in the
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following sections.

3.1 Edge Detection:

An edge can be characterized as an area where the statistics of the
signal changes rapidly. DPCM performs well for slow changing input, but
when the input changes rapidly, as when an edge is encountered, quantization
noise becomes quite large. Therefore an edge can be defined in terms of DPCM
signals as any region in which the quantizer noise is larger than some
threshold value.

With the above definition for an edge, the Jayant quantizer itself can be
used as an edge detector. As discussed in chapter 2, the step size of Jayant
quantizer changes depending on the input signal variations. It has two modes
of operation; granular mode corresponding to a steady input and slope overload
mode corresponding to fast changing input. In the granular mode the
quantizer noise is smaller in magnitude and is bounded by the size of the
quantization interval. Whereas in slope overload mode the quantizer noise is
unbounded and can be very large depending on the size of the prediction error.

The adaptation algorithm used with the Jayant quantizer is

AK) = [M(HGK-1)DAK-1))® 3.1
The step size A(k) expands or contracts depending on whether the input
falls in the inner levels or outer levels of the quantizer. For a slow changing

or steady input the quantizer operates in a granular mode and the step size
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reduces to a minimum value and alternately expands or contracts around that
minimum. For a fast changing input, the quantizer will switch to a slope
overload mode and the step size repeatedly expands to increase the dynamic
range of the quantizer. Therefore, it makes sense to conclude that some sort
of edge has occurred if the quantizer switches from granular to slope overload
mode. In a more general way we can conclude that an edge is encountered
when the step size expands for n or more consecutive samples. Wheren > 1

The number of stepsize expansions n, is chosen to be greater than one
because even in the granular mode the step size alternately expands and
contracts. For small values of n, the edges detected by this scheme may not
be actual edges that the eye can perceive.

Because we are using the Jayant quantizer itself as an edge detector,
the transmitter and receiver stay in synchronization. Whenever the
transmitter detects an edge, the receiver will also detect the same edge without
any timing information being sent. This makes it easy toimplement and saves

on overhead.

3.2 Edge Correction:

As discussed in the previous section, when the step size expands for n
consecutive samples, the transmitter detects the presence of an edge in the
image. Similarly, the receiver also detects the same edge without any

additional information being sent. Now we must find a way to improve the
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performance of the DPCM system with this knowledge of an edge.

In absence of channel noise, the only corruption in DPCM is the
quantizer noise. Now it can be detected effectively, whenever the corruption
exceeds some threshold value. The performance of a DPCM system can be
enhanced by using another quantizer to send this quantizer error as side
information. At the receiver the quantizer error can be added it to the output
of the receiver. This quantiz‘er is known as a recursive quantizer and will be
discussed in the following section.

The block diagram of this edge detection/correction scheme is shown in
figure 3.1. The quantization error in the Jayant quantizer is found by
subtracting the output of the quantizer from the input to the quantizer. This
error is quantized using a recursive quantizer and is given as an input to the
multiplier. The other input for the multiplier comes from the edge detector E,,
which will be one only when the step size of the Jayant quantizer expands for
n or more times. This makes the system send side information only when
there is an edge. Similarly, at the receiver the edge detector gives a value of
one for the same edge. Therefore, the side information will be added to the

receiver output whenever there is an edge.

3.3 Recursive Quantizer:
The purpose of this quantizer is to encode the error information and

send it through the channel as side information. This is to be done only



Recursive |
Quantizer

T E ] )
S, . B

o)
W

e - N
' Jayant ! Digital > Channel l———-—>
-3 Quansizer

P. Analog

k-

‘ predicler €———

Transmitter
€ - ‘ g,
Jayart v Y BN -
Quantizer i /ﬁ?_ \ /Y‘
anter < T
—Predelor —— !
B,y (X
; N\
EL Side information
Receiver

Figure 3.1 Block Diagram of an Edge Correction Scheme

24



25

when an edge is encountered. As 8-bit PCM data is used as input for the
DPCM system, edges can be reconstructed perfectly with an 8-bit recursive
quantizer. The cost, however, is a higher bit rate. A recursive quantizer is
designed as a trade-off between bit rate and perfect reconstruction.

The bit rate can be reduced by using entropy coding with the recursive

quantizer. Entropy coding is discussed in the following section.

3.3.1 Entropy Coding:

This is a variable length coding procedure which assigns codewords of
variable lengths. Highly probable outcomes are assigned shorter codewords
and vice versa. The average informatLion content of a source is given by

HGs) = =Y P, log,P, 32
k=1
P, is the probability of an occurrence of source output and L is the number of
possible output levels.

A method known as Huffman code [10] can be used for designing an
entropy code. This code has an important prefix condition property whereby
it can be uniquely decoded without any error. The entropy of a code can have
values in the range

0 < H(s) <log, L
Where L is the total number of possible source symbols or levels of the
quantizer. This coding scheme lowers the average word length if the source

symbols are not equally distributed.
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Like other coding schemes, this code also has drawbacks. First to design |
a code, the input data must be analyzed prior to transmission. If the source
statistics change, the code designed will not be optimum. Secondly, due to
variable length codeword, this code requires variable line speed. This is not
a problem for this application, because we are implementing entropy coding for
the side information, which even otherwise would have required variable line
speed for sending the side information.

The following results were obtained by using a quantizer of 16 levels
which is optimum for a signal with a Gaussian distribution and entropy coding
for the side information. This edge detection correction algorithm was added

to the adaptive ARMA simulation developed in chapter two.

3.4 Results:

In Figures 3.2 to 3.5, the error images of image01, image02, image03
and image04 by using the edge detection algorithm are shown. The results are
tabulated in Table 3.1. Error images using the ARMA predictor are also
_shown for comparison. In the case of Girl256, a clear improvement in edge
‘performance is indicated. The edge errors are almost invisible. This same
pattern of improvement can be seen in the case of Couple256. This image has
more edges in it, so it has more opportunity to be improved. Note that in the
Couple256 error image, that the right side of the man as well as the halos

around the couple and the entire background are all vastly improved.
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In the case of im.age03, there are not many edges. There is only slight
improvement from the ARMA predictor image to the edge detection simulation
image. The overall SNR is only improved from 29.25 to 30.5db.

Whereas in the case of image04, the edges are too small to be detected
as edges. The ribs and especially the letters in the image are between 1 and
3 pixels wide. So the edge detector can not respond to them, but the system

did improve the edges that are wide enough to be detected as edges.

Table 3.1 Results of an Edge Correction
Scheme with Entropy Coding.

Image Rate Side SNR PSNR
bit/pix Pixels (db) (db)

Image01 2.179 3765 27.55 37.09

Image02 2.238 4898 24.08 37.62

Image03 2.159 3337 30.50 36.30
Image04 2.143 2939 25.77 28.53

The average side information required in images 01,03 and 04 the is
around 0.15 bits/pixel, while with image02 with numerous edges, it required
about 0.23 bits/pixel. The cost of the edge enhancement was small indeed.

Based on these results we note that the extra information required for
this edge correction scheme is justified, except where fine edges are involved.
The disadvantage is that the use of side information requires variable line
speed or another channel. However, this makes it ideal for use in a packet

network environment, which will be discussed in chapter 6.
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CHAPTER 4 AN EDGE PRESERVING IMAGE CODING SCHEME

In this chapter, we present a simple, easy to implement differential
image coding system with excellent edge preservation properties. This coding
system is slightly different from the edge correction scheme discussed in the
previous chapter.

In an edge correction scheme, a Jayant quantizer is used as an edge
detector and the quantizer noise is sent through a side channel whenever it
exceeds some threshold value, i.e. when it encounters an edge. Then at the
receiver this side information is added to the output to correct the edge. The
advantage of this scheme is that it can be added to existing ADPCM systems.
But the disadvantage is that it requires a side channel to send the quantizer
noise.

In this chapter, we propose a different approach for edge preservation
which does not require a side channel. In this approach, if the prediction error
falls in the outer levels of the quantizer, the quantizer noise is re-encoded until
it falls in one of the inner levels of the quantizer. The basic idea is to increase

* the rate whenever the quantizer input falls in the outer levels.

4.1 Problem Notation:
As described in chapter two, in a DPCM system, the next sample value
is predicted and removed from the waveform at the transmitter and is added

at the receiver. The difference between the input signal and the predicted
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value is called the prediction error. The prediction error is quantized and sent
to the receiver. As we have seen from equation 2.9, when the channel is error
free, the reconstruction error at the receiver is simply the quantization error.

When the quantizer input falls in the inner levels, the quantizer noise
is known as granular noise. This noise is small and is bounded by the size of
the quantization interval. If the input falls in the outer levels, the quantizer
noise is known as overload noise. This noise is unbounded and can be very
large depending on the input.

As we know, the input signal changes rapidly when an edge is
encountered. These edge pixels are difficult to predict and the corresponding
prediction errors are generally large. These large prediction errors fall in the
outer levels of the quantizer and generate overload noise. Furthermore, these
errors affect not only the current pixel but also future predictions. Therefore,
the prediction error for the next few pixels tends to be large, leading to an edge
"smearing” effect.

The performance of a DPCM system can therefore be enhanced by
reducing the overload noise. One simple way to reduce the overload noise is
to increase the number of levels for the quantizer i.e., increase the rate. But
the rate increase is not required when the input falls in the inner levels.
Therefore, instead of increasing the rate for each and every pixel, increase the
rate only when an input falls in the overload region. The proposed scheme is

discussed in the following section.



34 .
4.2 An Edge Preserving Scheme:

The basic idea behind the proposed scheme is that slope overload noise
can be reduced by increasing the rate. This technique was developed by Rost
and Sayood [2]. The advantage of this scheme is that the rate can be chosen
depending upon the available channel capacity.

8-bit PCM data is used as an input to the DPCM system. If we could
use a 256 level quantizer the input signal could be reconstructed perfectly at
the receiver. But this increases the rate which is contrary to our purpose of
data compression. Therefore we design the quantizer in such a way that it

increases the number of levels only when input falls in the overload region.

,'\output
+Y,
Yo
A
X, v, X,
| input
|
|
Y,
|

Figure 4.1 Input versus Output of a quantizer
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When the input falls between X, and X;, the quantizer noise will be less
than or equal to half of the quantization interval and the quantizer puts out
the corresponding channel symbol. If the input falls in the range of less than
X, or greater than X,;, the encoder puts out the corresponding channel symbol,
i.e. Y, or Y, depending upon whether the input is less than X, or greater than
X;;. When the quantizer error is obtained, this error signal is encoded and the
process is repeated until the -rernaining error falls into one of the inner levels
of the quantizer. Therefore, for an input in the range of less than X, or greater
than Xy, the output is more than one symbol depending upon the input.

Similarly, the receiver stops decoding when Y, or Y, is received and
waits for the next symbols until a symbol other than Y, or Y, is received. Then
the values corresponding to all these symbols are added up to reconstruct the
corresponding pixel.

Let us say, for example, X = -3, X;; = 43, Y, = -4, Y, = +4 and the
quantizer is a uniform quantizer. For a prediction error, say e(k) = 1.5, which
falls in the inner levels of the quantizer, the encoder output will be Y,, i.e. 2.0.
For a prediction error of e(k) = 7.0, which is larger than Xy, the encoder puts
out the corresponding codeword Y,=4. Then it finds the quantizer error, which
is 7-4 = 3. This error signal is again encoded and the corresponding channel
symbol, which is Y; = 4 is transmitted. Now the error signal is 3-4 = -1, this
is again encoded and the output symbol is Y, = 0. Note that for an input of 7,

the output sequence is 4, 4, 0.
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image or can be varied within the image, if the available channel capacity
changes. Available channel capacity is usually a fixed quantity except in the
case of a packet network environment.

Four images are run through the simulator; image01 and image02 of
size 256X256 and Tiffany and Lena of size 512X512. Each image is run for
different multiplier values, _which gives different rates. But the rate or
multiplier value of the step size is fixed within the image.

Image01, image02 and their resultant images are shown in figure 4.2 at
a rate of 2.0 bpp. And the results at different rates for these two images are

tabulated in table 4.1.

Table 4.1a Results at different bit rates for image0l.

S.No. Multiplier Rate SNR(db) PSNR

Value bpp (db)
1 1.0 1.087 1841 27.95
2 0.8 1.121 20.19 29.73
3 0.5 1.254 24.11 33.65
4 0.4 1.354 25.85 35.38
5 0.3 1.529 27.99 37.53
6 0.2 1.896 30.93 40.47
7 0.175 2.057 31.97 41.51
8 0.15 2.264 33.15 42.69
9 0.1 2.946 35.84 45.38
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Table 4.1b Results at different bit rates for image02. :

S.No. Multiplier Rate SNR(db) PSNR

Value bpp (db)
1 1.0 1.113 156.53 29.07
2 0.8 1.160 17.50 31.05
3 0.5 1.304 21.54 35.08
4 04 1.403 23.36 36.90
5 0.3 1.572 25.65 39.19
6 0.2 1.928 28.69 42.24
7 0.175 2.066 29.78 43.32
8 0.15 2.243 30.82 44.36
9 0.1 2.832 33.61 47.15

At the same bit rate, image01 shows better performance than image02.
This is because image02 contains more details and the prediction error falls
quite often into the outer levels of the quantizer generating overload noise.
Whenever the quantizer input falls into the overload region, the error is
encoded repeatedly until it falls into the granular region, which increases the
bit rate.

The resultant and error images of Tiffany and Lena are shown in figure
. 4.3 at a rate of 2.0 bpp. The results with different multiplier values are

tabulated in table 4.2.



Table 4.2a Results at different bit rates for the Tiffany

image.
S.No. Multiplier Rate SNR(db) PSNR
Value bpp (db)
1 1.0 1.180 27.85 35.51
2 0.8 1.256 29.71 37.38
3 0.5 1.502 33.49 41.16
4 0.4 1.670 35.29 42.96
5 0.3 1.956 37.51 45.18
6 0.2 2.533 40.51 48.18
7 0.175 2.786 41.60 49.27
8 0.15 3.125 42.50 50.17
9 0.1 4.283 45.34 53.00

Table 4.2b Results at different bit rates for the Lena image.

S.No. Multiplier Rate SNR(db) PSNR
Value bpp (db)
1 1.0 1.068 18.74 31.90
2 0.8 1.099 20.70 33.86
3 0.5 1.203 24.65 37.81
4 0.4 1.287 26.39 39.55
5 0.3 1.437 28.53 41.69
6 0.2 1.762 31.62 44.78
7 0.175 1.902 32.72 45.88
8 0.15 2.088 33.86 47.03
9 0.1 2.748 36.76 49.92

39
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The image Lena which is also known as Hat girl contains more edges,
and the Tiffany image contains face and a background with little detail. As
the details or edges in an image increase, the quantizer falls more often into
the overload region and increases the bit rate for the image. But in all the
images shown at a rate of 2.0 bpp there are absolutely no edge errors.

This edge preserving scheme is easy to implement in real time and has
excellent edge preservation properties over a wide range of bit rates. The edge
preserving property is especially useful in encoding scientific and medical
images.

This scheme therefore requires operating at different rates. In a packet
switched network, the available channel capacity is not a fixed quantity, but
fluctuates as a function of the load on the network. If we implement this
scheme on a network, it can take advantage of increased capacity when it
becomes available while providing graceful degradation when the rate
decreases to match decreased available capacity. This will be addressed in

chapter 6.
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CHAPTER 5 TOKEN RING NETWORK |

In this chapter we provide an introduction to the token ring network and
define the terminology associated with it. In the next chapter, the results of
simulating the use of the image coding schemes discussed in the previous
chapter on this type of network will be presented.

During the recent years, local area networks have been used for high-
speed data exchanges and resource sharing at a single site such as an office
building, factory, campus, etc. The token ring network constitutes one of the

popular approaches to implementing local area networks.

5.1 Introduction:

A token ring network ié shown in figure 2.1 [11]. In this network, nodes
are arranged logically in a ring with each node transmitting to the next node
around the ring. Each node simply relays the received bit stream from the
previous node to the next with at least one bit delay. The token is defined as
a special bit pattern which circulates on the ring whenever all the stations are

’ idle. Whatever node has the token is allowed to transmit a packet. When the
packet has been transmitted, the token is passed on to the next node. That is,
whenever the node that is currently transmitting a packet finishes the
transmission, it places the token, for example 01111110, at the end of the

packet. When the next node reads this token, it simply passes the token if it
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Figure 5.1 Token ring network

has no packet to send. If it does have a packet to send, it inverts the last
token bit, turning the token into 01111111, The station or node then breaks
the interface connection and enters its own data onto the ring.

Suppose for example, that at time zero, node 1 receives a free token and
it has a packet to transmit. It inverts the last bit to form a busy token, and
then starts to transmit a packet. FEach subsequent node around the ring

simply delays this bit stream by one bit per node and relays it on to the next
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node. The intended recipient of the packet both reads the packet into the node
and also relays it around the ring. After the round trip delay, the bit stream
or packet gets back to the originator, node 1 for our example, and is removed
by it. The Originator verifies whether or not the packet was correctly received.
If correct reception occurs, then a free token is transmitted; otherwise, a busy

token is sent followed by a retransmission.

®
el =
|
s
5

Figure 5.2 A ringnet in a star configuration.
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One disadvantage of a ringnet is that if an interface at one node
malfunctions then the entire ring fails. By physically connecting each interface
at a common location, it is easier to find a failed interface and bypass it at the
central site, such a topology is called a star topology. The token ring network
in a star configuration is shown in figure 5.2. If the interface at the common
location goes down, the entire network is down. Usually, token rings exists as
star-ring topologies, which means that the physical topology is a star topology
with individual cables running from a centralization point to each user
location. The logical topology is the same as a ring network where there is no
central node and all control is at the individual stations. It is wired as a star,

but acts like a ring.

5.2 Packet:

A packet is a message with a physical header and trailer. A packet or

token ring frame consists of 9 fields as shown below.

' Frame : Ending vprame !lnform— Source | De_stm- f Frame Access Starting
. Status . Delimeter| Check | ation Address ; ation | Control | Control | Delimeter
‘ Sequence! Adcress | |

i
L

Figure 5.3 Packet format.

The starting delimiter is 8-bits wide and employs a unique Manchester

code violation which indicates the start of the frame. The physical control
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fields consists of two frames, access control and frame control. Both fields are
8-bits wide in length and are used to manage the physical layer protocol. The
first three bits in the access control field indicate the priority of the token
frame in the ring. Bit four is set by the active monitor when it repeats a frame
or token with a priority greater than zero. Communication between network
controllers is through a special class of frames called Medium Access Cdntrol
(MAC). The scheduling of packet transmission is part of the MAC layer of a
local area network. The frame control field defines the MAC control field type.

The next two fields contain node addresses. The destination address,
contains the address of the node for which the data packet is intended. Each
node examines a frame as it passes through the ring. If the destination
address matches the address of the local node, it is captured. The source
address containing the address of the node which originates the data packet.
The information field contains the actual data message. It must be at least
one byte in length. The frame check sequence is an appended CRC calculation
of all the fields before it, with the exception of the starting delimiter. The CRC
algorithm is used to check for errors in the frame.

The ending delimiter defines the end of the frame. The frame status
field indicates whether the frame’s destination address was recognized, and

whether the frame was copied by the intended node.
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5.2 Bit Stuffing:

The message is a combination of 0’s and 1’s and it may contain a bit
pattern which is similar to the token. When a packet is passed from one node
to the other, a node reads the packet. If the message contains a bit pattern
similar to the token, then the receiving node may consider it to be a token and
change it to a busy "token" and start transmitting its own packet. Bit stuffing
1s used to prevent a bit pattern similar to a token from occurring in the data.
For example, consider an 8-bit token, a bit stuffing algorithm would insert a
zero into the data stream after each sequence of seven cons;ecutive ones. The
data receiver would use a similar algorithm to dispose of the inserted bit

following any sequence of seven consecutive ones before decoding.

5.4 Priorities:

In practical system implementations, messages are often divided into
different priority levels according to their delay time constraints. For example,
a network control message, or a packetized voice message would require strict
delay time limits while an ordinary data message may afford to experience
higher delay fluctuations.

Priorities can be introduced fairly easily in a ringnet by having a field
for priorities in a fixed position. A high priority station can reserve the next
transmission right in the reservation field of the message transmitted by the

low priority station when the reservation field passes through the high priority
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station. Then the free token at the high priority level is passed to the high

priority station. After all messages from the high priority stations are
transmitted, the free token is returned to the station in the down stream of the

previous low-priority station [12].

5.5 Service Discipline:

Most work [13])-[14), carrying out delay analysis for token schemes
assume that messages arriving at a station belong to a single class and employ
a single service discipline, such as exhaustive, partially gated and gated or
limited.

In an exhaustive system, when a node receives a free token, it empties
all the waiting packets in therqueue at that node before sending the free token
to the next node. Therefore, each node sends a free token to the next node
only when it finds its queue is empty.

In a partially gated service, a node sends only those packets which were
present at the time of free token arrival, before sending the free token to the
_next node. Those packets which come after free token arrival will wait for the
next free token.

In a gated or limited service network, each node can send only one
packet with each free token capture. After sending one packet, a node will
pass the free token to the next node, even if there are packets waiting in the

queue.
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The Delay tirae is the sum of delays on each subnet link traversed by

the packet. One of the most important performance measures of a data
network is the average delay required to deliver a packet from origin to
destination. Queuing theory is the primary methodological frame work for
analyzing network delay. In this thesis, an M/M/1 queuing model is used to

analyze the network performance.

5.6 The M/M/1 Queuing System:

The M/M/1 queuing system consists of a single queuing station with a
single server like & single transmission line in a communication context.
Customers arrive according to a poisson process with rate A, and the
probability distribution of the service time is exponential. The meaning of
these terms is explained below.

The first letter indicates the nature of the arrival process, M stands for
memoryless, which here means a poisson processi.e., exponentially distributed
inter-arrival times.

The second letter indicates the nature of the probability distribution of
the service times. M stands for exponential distribution. Successive inter-
arrival times and service times are assumed to be statistically independent of
each other.

The last number indicates the number of servers. In this case we take

only one server i.e., one node at each queue.



52
Aécording to M/M/1 queving theory, packet arrival process at each node

is a poisson process and the inter-arrival time is an exponential distribution.
Let us use F(x) as the cumulative distribution function and flx) as probability

density function. F(x) and f(x) are related by

FQ) = ff(x) dx 5.1

Let x have an exponential distribution, then the probability distribution

function is given by

fix) = 1- e ifxz20 5.2
=0 otherwise
where A is the mean inter-arrival time

Substituting 5.2 into 5.1 gives
F) = [(1-e™) dx 5.3
0

To generate an exponential random number, first generate a random
number R in the range (0,1), then equate the number to the cumulative
distribution function and solve for x. Cumulative distribution function Fx)is

shown in the figure 5.4.

- x=-AIn(1-R) 5.4

The inter-arrival times of packets which have an exponential

distribution are found by using the above formula.
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Figure 5.4 Cumulative distribution function.

5.7 Throughput:
Another parameter used to analyze the performance of a network is

throughput p, which is given by

b = bits/packet
A, = number of packets/second
r = channel capacity
Throughput tells about how efficiently the channel is utilized by the network.
The institute of Electrical and Electronics Engineers has developed a set

of standards, divided into five parts, 802.1 to 802.5. The 802.1 standard deals
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with interfacing the LAN grotocols to higher layers aﬁd 802.2 is a data link

control standard. 802.3 to 802.5 are MAC standards referring to CSMA/CD,
token bus and token ring systems, respectively.

The physical ring provides for IEEE 802.5 unidirectional point-to-point
transmission of signals to/from up to 250 workstations attached to one ring.
The rings can be connected through several bridges which can also radiate
through a building or office complex. This standard has been implemented in

VLSI chips to implement a token ring running at 4 megabits per second.
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CHAPTER 6 SIMULATION

In this chapter, Edge Correcting DPCM and the Edge Preserving scheme
will be simulated on a token ring network and finally the results of the
simulation will be presented.

In chapter three, we discussed an edge correcting scheme, in which the
edges were corrected by sehding a quantized representation of the noise
through a side channel. The advantages of this scheme are that the
performance of a DPCM system can be improved with only little overhead and
also it can be added to existing ADPCM systems.

The disadvantage is that the use of a side channel introduces
synchronization problems. This scheme requires a variable rate channel,
because the side information needs to be sent only when there is an edge.

These synchronization problems can be overcome by implementing this
scheme in a packet network environment. Token ring networks support two
major classes of traffic: synchronous and asynchronous. The synchronous class
provides a pre-allocated bandwidth and a guaranteed response time, and may
be used for time critical messages such as voice and video signals. The
remaining bandwidth is dynamically allocated to asynchronous class traffic
with non-time critical messages such as data. This network can also support
multiple classes of asynchronous traffic by means of a timer-based priority

mechanism. Analytical and simulation models have been used to evaluate the
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performance of the 802.4 priority scheme for homogenbué token-passing bus
networks supporting multiple classes of traffic [15]-[16].

To implement the edge correcting scheme on a token ring network, side
information can be considered as asynchronous traffic and regular information
as synchronous traffic. Apart from delay limits, side information is not very
important and can be sent only when the bandwidth becomes available for the
asynchronous traffic.

In the edge preserving scheme, the edges are preserved by increasing
the rate whenever the prediction error falls in the overload region of a
quantizer. This rate is increased by repeatedly encoding the quantizer error
signal until it falls in one of the inner levels of the quantizer.

The advantages of this scheme are that it is easy to implement in real
time and has excellent edge preservation properties. This edge preserving
quality is very much required in the encoding of scientific and medical images.

This coding scheme can be operated at variable rates which makes it
especially attractive for use in the packet network environment. In the
following sections,the simulation of this scheme on a token ring network will
be discussed.

In both of the simulations, we assume that there is no station fault, no

transmission error and no token loss.

6.1 Timed Token Protocol Description:
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In a token ring network, any station may capture the token by removing
it from the ring. After the removal of the token, the station may begin to
transmit information frame(s). When the transmission of information is
completed, the station immediately issues a new token. It supports two classes
of traffic;

(1) Synchronous traffic: A class of data transmission service whereby each
requester is pre-allocated a maximum bandwidth and guaranteed a response
time not to exceed a specific delay.

(2) Asynchronous traffic: A class of data transmission service whereby all
requests for service contend for a pool of dynamically allocated ring bandwidth
and response time.

A set of timers and several parameters are used to limit the length of
time a station may transmit messages before passing the token to the next
station and the duration of information transmission of each class within a
station [17]. Each station maintains two timers, the Token_Rotation_Timer
(TRT) and the Token_Holding_Timer (THT). TRT at node j is used to time the
interval taken by the token to circulate around the ring starting from node j.
When node j recaptures the token, TRT is reset and restarted immediately.
Before resetting TRT, its current value is assigned to THT. TRT and THT
both become active during message transmission at node j. THT is reset when
the token is passed to the next station, and it becomes inactive while TRT

continues to run until the token arrives at node j again.
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When the network is initialized, the stations decide the value of a target

token rotation time (TTRT), so that the requirements for maximum access time
are met. The upper bounds on the maximum and average token rotation time
have been studied in [18]; the results show that the token rotation time can
not exceed twice the value of TTRT, while the average rotation time is not
greater than TTRT. The extension to several priority classes is obtained by
introducing a target rotation time for each additional class, and by using that
value to check whether or not the station is allowed to transmit frames of that
class.

If a station captures the token before its TRT reaches the value of TTRT,
it is called as an ’early’ token. If it captures the token after the TRT has
exceeded the value of TTRT, then it is called a 'late’ token. An ’early’ token
may be used to transmit both synchronous and asynchronous traffic while a
‘late’ token may only be used for synchronous traffic. The difference between
the TTRT and TRT will be the available bandwidth for the asynchronous
information. The amount of time a station can transmit is limited by the THT.
In the following section, the simulation of the edge correcting scheme on this

protocol will be discussed.

6.2 Simulation of Edge Correcting Scheme:
In this scheme, we have regular DPCM output as the synchronous

message and the quantizer error as side information. This system can not
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afford to lose any of the regular DPCM output and also this information has

timing constraints. The side information is not very important because the
image can be reconstructed at the receiver with some degradation even without
this side information.

In the analysis of a token protocol, it is generally assumed that the
queues of asynchronous messages ready to be sent are heavily loaded, so that
messages are always available for transmission. In our case, the asynchronous
information queue will not be loaded heavily because the side information
needs to be sent only when there is an edge.

The size of the packet for the synchronous trafficis fixed. Whenever the
node captures an ’early’ token, the size of the packet will be increased to match
the available capacity and the regular information followed by the side
information if present will be sent.

In the description of the protocol, we saw that the transmission ends
when THT is reached or when there is no more asynchronous information to
transmit. In this simulation, the transmission ends when the available
bandwidth is utilized or when there is no more side information to send,
because the asynchronous traffic is not heavily loaded. The most recent side
information will be transmitted in the bandwidth available for asynchronous
traffic. If there is any side information left after the transmission, it will be
discarded.

It is assumed that TTRT is the time taken by a token to get back to the
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same node when all the nodes have a packet to send. If some node/nodes
does/do not have a packet to send, the token comes earlier than the expected
time. If node 1 captures an ’early’ token i.e. TRT is less than TTRT, then
(TTRT-TRT) becomes the available for the side information. If node 1 captures
a’late’ token i.e. TRT is greater than TTRT, then only the regular information
will be sent and the side information will be held in the queue.

At the receiver, whenever it receives an increased size packet it takes
the bits received after the regular size of the packet as side information. This
side information will be added to the corresponding most recent pixels received
to correct the edge errors.

The inter-arrival time of packets are found by using equation 5.4 the
parameter, A in that equation indicates the average inter-arrival time. The
inverse of X gives how many packets arrive at each node in one unit of time,
which is defined as the load in this thesis.

The following parameters were assumed in this simulation :

Number of nodes = 50

Bit travelling speed = 200,000 met/msec
The distance between nodes = 100 meters

Data generation rate = 11,000 bits/msec
Size of the packet for synchronous information = 1540 bits

The time taken by a node to read the data = 10psec

Channel capacity of the coaxial cable = 12,000 bits/msec
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The system is assumed to work according to the following general
conditions :
* The packet arrival process at each node follows a Poisson distribution. The
actual image information is taken at node 1 with regular DPCM output
information arriving into one buffer and side information into the other buffer.
e The messages transmitted by each station belong to two classes, i.e.
asynchronous and synchronous messages.
* The access mechanism is based on the timed token approach but different
classes of asynchronous messages are not considered.
* The queues of asynchronous messages are not heavily loaded.
* When the network is started, the token rotation will allow only the
transmission of synchronous messages; the second token rotation will allow

both synchronous and asynchronous messages.

6.3 Results for an Edge Correcting Scheme:

The token ring is simulated by taking image information obtained using
the edge correcting scheme at node 1 and random information at all other
nodes for the two cases given below:

(i) Messages transmitted by all the nodes belong to two classes i.e. synchronous
and asynchronous messages.
(1) Messages transmitted by all the nodes belong to only one class i.e.

synchronous.
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Load versus delay and throughput versus del.ay characteristics are
plotted for both the cases and are shown in figures 6.1 and 6.2 respectively.
The graph in figure 6.1, shows that at a particular value of the load, the
average delay of a packet in a network with both the classes of traffic is more
compared to the case where only synchronous messages are transmitted. This
is true especially at low loads; as the traffic increases there is not much
difference in the delay for the two cases, because the network will not have
badwidth available for asynchronous traffic when the trafficis busy. It is quite
obvious that the transmission of asynchronous messages increases the delay
for the synchronous traffic.

The token ring network transmitting both synchronous and
asynchronous messages provides better delay versus throughput
characteristics. From the graph, it can be seen that at a particular value of
throughput, the delay is less or at a particular value of delay, the throughput
is more for the first case. Here again, at large values of throughput there is
not much difference between the curves. The reason for the better throughput
versus delay characteristics is that even at low loads the network can utilize
the channel efficiently by transmitting asynchronous messages whenever the
bandwidth becomes available.

Image02 and image05 are simulated and the results obtained at

different network loads are shown in tables 6.1 and 6.2 respectively.
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Figure 6.1 Load versus Delay for the Token Ring
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The first two readings in these tables are taken by operating the

network at high loads which is in the unstable region. At these high loads
almost every node will have a packet to send and will not have bandwidth
available for side information. As the load decreases, more and more side
information will be transmitted, which provides a better reconstructed image
at the receiver. In this sim.ulation, at a load of around 0.09, node 1 finds
enough bandwidth to transmit all the side information and after that,
decreasing the load will not improve the image.

Resultant images and error images of image02 obtained at four different
network loads are shown in figure 6.3. The image and the error image
obtained without any side information is shown in figure 6.3a for comparison.
The image shown in figure 6.3b, is obtained by sending side information in the
areas of woman’s hands, woman’s left knee and in some portion of their heads.
In figure 6.3 c, the edge errors are corrected in the region of woman’s hands,
man’s shoulder, photo frame and their heads. Some of the edge errors at the
man’s leg are also corrected. But in this case, edge errors are present at the
~woman’s left knee. In the image shown in figure 6.3d, all the edge errors are
corrected except few errors at the intersection of man’s leg and chair. Whereas
for the image shown in figure 6.3e, all the side information is sent and there

are absolutely no errors.
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Table 6.1 Results obtained at different network loads for image02.

S. Load Delay Throughput Rate SNR PSNR

No. msec bpp db db
1 226 1773 0.8033735 2.011 19.79  33.33
2 .185  147.8 0.8033297 2.014 19.82 33.36
3 156 123.3 0.8032793 2.057 21.22  34.76
4 136 105.3 0.8032306 2.126 22.15 35.69
5 .119 89.19 0.8030134 2,221 22,51 36.05
6 107 7317 0.8019965 2223 23.68 37.22
7 097 58.35 0.8000950 2.237 24.05 37.59
8 085  42.82 0.7967703 2238 24.08 37.62
9 .081 38.87 0.7956204 2.238 24.08 37.62
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Table 6.2 Results obtained at different network loads for image05.

S. Load Delay - Throughput Rate SNR PSNR

No. msec bpp db db
1 254 1941 08033794  2.002 24.39  29.13
o 169 1353 08033345 2016 2447  29.22
3 156 1236 08033151  2.039 2458  29.32
4 145 11436 0.8033025 2075 2503 29.78
5 127 9752  0.8032005  2.183 2593  30.68
6 .107 70.32 0.8019068 2.227 26.16 30.90
7 092 5179 07989234  2.237 26.28  31.02
8 081 3842 07954938  2.237 2628  31.02
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6.4 Introduction to Protocol with reference to buffer occupancy:

A free token will be rotating around the token ring whenever all the
stations are idle. A node wanting to send a message captures this free token,
changes it to the busy token and starts transmitting the packet. After
completion of the packet transmission, the node sends a free token to the next
node. So a node can send only one packet with each token captured and the
other packets will be waiting in the queue. The size of the buffer at each node
is finite. It can accommodate only a certain number of packets and packets
coming after that will be lost. To avoid that kind of situation, the network
must operate at loads where the maximum number of packets waiting in the
queue matchs the buffer capacity, i.e. in the stable region. To find this region,
load versus delay characteristics are drawn in figure 6.4. It can be seen from
the graph that at high loads or when the traffic is busy, the delay increases
enormously which can not be tolerated in real time.

In timed token protocol, we had two classes of traffic: asynchronous and
synchronous. Asynchronous messages do not have timing constraints and can
be transmitted only when the bandwidth becomes available. Now consider a
case where all the traffic belorgs to only one class, but the size of the packet
can be changed depending upon the available capacity. The amount of
information sent in each time is fixed, but only the length of the packet is
variable. It should be able to take advantage of increased capacity when it

becomes available and to decrease the size of the packet when the available
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capacity decreases But the data generator while generating the packet itself

needs to know about the bandwidth available for that packet. Therefore, it
should predict the available capacity for the future coming packets depending
on the present traffic conditions. Because once the packet is processed, the
system can not afford to lose any information.

One simple way to predict available bandwidth for the future is to
compare the buffer occupancy. The number of packets waiting in the queue is
directly related to the traffic because a node can send only one packet with
each token capture independent of how many packets are waiting in the queue.
Therefore, depending upon the buffer occupancy, the size for the next coming
packet can be decided. We can fix thresholds for the buffer, with which at
different levels of occupancy the data generator will generate packets with
different lengths. The edge preserving scheme based on this principle will be

simulated in the next section.

6.5 Simulation of an Edge Preserving Scheme:

This scheme is simple, easy to implement in real time and has excellent
edge preservation properties. This can be operated either at a fixed rate or at
variable rates.

The stepsize of the quantizer can be varied to get the desired bit rate.
When the quantizer input falls in the inner levels, the rate obtained is fixed.

For a fast changing input signal, the prediction error falls in the overload
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region, which usually happens when it encounters an edge in the image. When
the quantizer input falls in the outer levels which are in the overload region,
the error will be encoded repeatedly until it falls in one of the inner levels of
the quantizer. The bit rate corresponding to this rapidly changing input is
variable and is higher than the usual rate.

This scheme would be. especially useful in transmitting images over
channels where the available bandwidth is variable. This makes it attractive
for use in the packet network environment.

Like the previous simulation, this scheme is implemented on a token
ring network by taking the image information at node 1 and random
information at all other nodes. In this simulation, the number of pixels per
packet at node 1 is fixed, whereas the length of the packet is varied. It is
assumed that the length of the packet is fixed at all the nodes except at node
1. In this thesis seven different thresholds are fixed for the buffer occupancy.
The data generator, before processing the packet, will observe the buffer
occupancy at that node and then read the length of the packet corresponding
to that level of occupancy. Then select the bit rate to match the packet length.
This is the length of the packet which can be transmitted in the available
bandwidth.

Once the packet arrives, the length of the packet can not be changed and
also the system can not afford to lose any information. It is assumed that no

information is lost, so all the packets coming after the seventh threshold of
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buffer occupancy are processed at a rate cf 1.0 bpp and stored in the buffer.

With each packet, the stepsize of the quantizer chosen to process that
packet is also sent which gives an overhead of three bits. The first three bits
in the information of a frame represents the stepsize. At the receiver, the
image will be reconstructed with the corresponding stepsize. The network
parameters used in this simulation were the same as the parameters used in

the edge correcting scheme simulation.

6.6 Results for an Edge Preserving scheme:

Transmission of Image29, which is the Tiffany image and image35,
which is the Lena image, was simulated. Results were obtained by considering
the buffer thresholds and the corresponding rates given in table 6.3. The
Tiffany image is a face with little detail while the Lena image has extensive
edge information.

The graph of signal to noise ratio versus network load is drawn in figure
6.5 for the Tiffany and Lena images. The shape of the curve is the same for
. both the images. But the Tiffany image which contains less detail provides
better performance than the image Lena which contains more edges. At low
loads, high SNR values can be obtained for either image, but at these loads the
throughput of the network would be low. At moderate loads, the SNR value
varies depending upon the load. It is quite obvious that at high loads, i.e. in

the unstable region, we can only transmit the image with low rates, because
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Table 6.3 Buffer thresholds and
corresponding packet lengths.

Buffer Packet
Occupancy Length bits
bits
0 - 2999 1632
3000 - 5999 1509
6000 - 8999 1078
9000 - 11999 978
12000 - 14999 878
15000 - 17999 809
2 18000 770

there will always be numerous packets waiting in the queue. Since the
shapeof this curve is independent of an image for the given network, the
operating load for the network can be chosen depending upon the requirement.

The same image is transmitted through the network for about ten times,
and its performance is studied. When the network is operated in the unstable
region, the bit rate achieved for an image is usually low. Even if initially the
network allows node 1 to transmit the image at reasonably good rates, after
two or three runs the rate will fall down to the minimum value which is 1.0
bpp in this thesis. But when the network is operated in the stable region, the

SNR value fluctuates around the average value.
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For the Tiffany image, the graphs of SNR versus packet number and
delay versus packet number for three runs are drawn in figure 6.6 and the
corresponding resultant images are shown in figure 6.7. The results are
tabulated in table 6.4 for both the Tiffany and Lena images. It clearly shows
that there is peak in delay characteristics corresponding to the crest in the
SNR characteristics and vice versa. From this, we can say that the
assumption we made in the description of the protocol, that the packet length
or the rate is chosen depending on the buffer occupancy, is satisfied.

If we compare the delay characteristics of Tiffany image with the delay
characteristics of other images for the same network conditions they are
exactly the same. SNR characteristics are a little different, because they are
not only a function of network parameters but also of the packet in the image.

The Edge Correcting scheme and the edge preserving scheme have been
successfully implemented on a token ring network. In the simulation of an
edge correcting scheme, it is assumed that TTRT is same as the time taken by
a token to return to the same node when every node has a packet to send.
. Depending upon the application and network traffic TTRT can be changed.

In the simulation of an edge preserving scheme, thresholds for the buffer
occupancy and corresponding packet lengths are chosen based on the required
performance of an image. In both the cases, though different regions in an
image are transmitted at different rates, the reconstructed image looks almost

uniform,
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Table 6.4 Results at a nétwork load of 0.24 while sending the same

image.
Image29 Image35

Run | Rate SNR  PSNR Rate SNR PSNR
# bpp (db) (db) bpp (db) (db)
1 1.759 33.11  40.78 1.733 28.31 41.47
2 1.587 32.01 39.68 1.599 26.31 39.47
3 1.926 35.52  43.18 1.933 30.90 44.06
4 1.819 35.32 4299 1.837 31.10 44.26
5 1.965 37.16  44.82 1.965 32.93 46.09
6 1.858 35.95  43.62 1.856 31.59 44.75
7 1.599 32.75 4042 1.629 28.59 41.75
8 1.795 35.07 42.74 1.795 30.95 44.11
9 1.660 290.83  37.49 1.598 23.86 37.02
10 1.987 3747 45.14 1.977 33.10 46.27
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Figure 6.7b Resultant image of Tiffany,

rate=1.79, SNR=35.07dB (8th run)
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Figure 6.7c Resultant image of Tiffany, rate=1.66, SNR=29.83dB (9th run)

ORIGINAL- PAGE 5
OF POOR QuALITY



88
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

In chapter three, we saw that in an Edge preserving scheme the edge
performance is improved by sending the quantizer error to the receiver as
extra information. The quantizer error is encoded by using a recursive
quantizer with entropy coding. The results show that the system is successful
except where fine edges are involved. This is because the edge detector
responds for edges which are of at least three pixels wide. This scheme can be
added to the existing DPCM systems.

In chapter four, the performance of a DPCM system is enhanced by
reducing the overload noise through a scheme known as the edge preservation
coding scheme. The sampling rate is increased when the quantizer input falls
in the overload region. The results show that this scheme has excellent edge
preservation properties over a wide range of bit rates. Even at low rates there
are absolutely no edge errors. The bit rate required by this scheme is quite
low when compared with an edge correcting scheme to get the same
performance. The reason for the difference in the bit rate is that this scheme
uses a recursive quantizer unlike the Edge Correcting DPCM which uses a
Jayant quantizer. The Edge Preservation coding system is more complex than
the other scheme.

The Edge Correcting DPCM and the Edge Preservation schemes requires

variable rate channel. In chapter six these two schemes are implemented on
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a token ring network. The edge information is sent in such a way that it will
serve both purposes; (i) to utilize the channel efficiently by sending extra
information only when there is bandwidth available (ii) to improve the
performance of an image. In the Edge Correcting scheme, whenever the
bandwidth becomes available, the recent side information is sent and after that
if any side information is left, it is discarded. So, depending on traffic
conditions the station or node may discard side information in some regions.
Similarly, in the other scheme, the bit rate or the quantizer stepsize for each
packet is variable. In both the schemes though the bit rate is variable in
different regions of an image the image looks uniform. Implementation of
these schemes on a token ring degrades the delay versus load characteristics
but improves the delay versus throughput characteristics. These two coding
schemes are successfully implemented on a token ring network.

If the network is busy and there are many nodes, the token ring method
is better, as it assures each node access within a predetermined time. A token
will be rotating on the network from node to node independent of the traffic.
. If traffic is light at some nodes, the token rotation unnecessarily increases the
packet delay at those nodes. The CSMA/CD method is best if the network
trafficis low and there are only a few nodes. The users are not waiting for the
token to come back around the ring. For further research these schemes can
be simulated on a network which uses CSMA/CD method and the performance

can be studied.
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Figure A.4 Original image of Image04
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